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Abstract 

Recent progress in identifying depression 
through speech patterns has gained momentum 
due to the improved precision of foundation 
models. These models, trained on vast 
unlabelled speech datasets using self-
supervised learning, extract powerful speech 
characteristics within their transformer 
encoder layers. This study introduces two 
novel approaches: one to tackle the challenge 
of limited data, and another to train the model 
in a way that minimizes speaker-specific biases. 
This ensures the model discerns speech 
features that are indicative of depression, 
irrespective of the speaker. 

1 Introduction 

Depression is a widespread and serious mental 
disorder that is often overlooked due to its similar 
signs and symptoms [1]. Timely diagnosis is 
essential for successful intervention. The non-
invasive and continuous tracking of physiological 
and psychological markers through smartphone 
tech and wearable devices has recently garnered 
significant attention from the research community 
[2][3]. Consequently, there's a growing interest in 
fully automated depression screening tools. 
Notably, psychomotor retardation, a hallmark 
symptom of Major Depressive Disorder (MDD), 
is evident through unique verbal cues such as 
monotonic speech patterns, specific word choices, 
and uncommon speech interruptions [5][6][7]. 
This has led to a surge in the adoption of 
automated speech-based screening methods [4]. 
However, despite the depth of research, using 
conventional machine learning techniques for 

auto-detecting depression from speech is still 
problematic due to the scarcity of data [2]. 
 
 
Self-supervised learning (SSL)techniques aim to 
develop a versatile robust universal model that can 
be advantageous across numerous downstream 
tasks. In the recent years the progress of 
foundation models trained in a self-supervised 
way exhibits that the self-supervised 
representations related to acoustic word 
embeddings and learning with zero lexical 
resources [8].Such encoders in foundation models 
trained with SSL method contains information 
about both linguistics and paralinguistic parts of 
speech which can be applied to many areas 
especially in affective computing in SER (speech 
emotion recognition) [9]. Foundation models, like 
the Wav2Vec[10], huBERT[11], WavLM[12] 
excel in learning intricate speech features, largely 
due to their training on extensive amounts of 
unlabelled data, ranging from 60k to 94k hours. 
Such models not only effectively model speech 
content via masked speech prediction but also 
expand their versatility to non-ASR tasks by 
integrating speech denoising creating state of the 
art (SOTA) benchmarks[13]. 
 
Learning feature representations related to the 
speaker such as X-vectors, i-vectors , and other 
speaker embeddings have shown potential to 
increase the accuracy of detecting depression from 
speech [14][15][16].However Training a model in 
a speaker-invariant way involves ensuring that the 
model generalizes across various speakers rather 
than overfitting to specific vocal characteristics. 
By doing so, the model focuses on understanding 



the content and nuances of the speech rather than 
the unique attributes of individual speakers. This 
approach ensures that the model is less prone to 
learning speaker-specific features, which could 
limit its applicability and accuracy when exposed 
to voices it hasn't encountered during training. In 
essence, a speaker-invariant training approach 
encourage the model to learn more subtle acoustic 
feature patterns related to psychomotor retardation, 
making the model more versatile and robust in 
real-world scenarios where diverse voices are 
encountered. 
 

This paper we propose a robust approach for 
automatic depression detection that is both speaker 
and language independent. By analysing the latent 
speech representations from the initial encoder 
layers, we theorize that these representations are 
language-neutral due to their proximity to 
fundamental vocal features, To the best of our 
knowledge, this is the first work to establish  vocal 
biomarkers associated with depression are 
inherently objective and remain unaffected by 
lexical nuances like accents and languages as the 
datasets used in training and evaluation consist of 
samples with different age groups and 
demographics. Self supervised representations of 
both English and Mandarin Chinese corpuses are 
fed to the model and trained in a  speaker-invariant 
manner to minimize the effect on masking acoustic 
abnormalities caused by psychomotor retardation. 

2 Proposed Method 

In this section we present a unique approach for 
Speech-Based Depression Detection (SDD). Our 
method uses a two-pronged strategy: first, self-
supervised learning processes are utilized to build 
feature representations with augmentations; 
second, these concatenated features are then 
applied to a training model that makes use of a 
combined loss-based adversarial learning 
framework. In a given  training session with 
English and Mandarin depression speech corpus, 
this framework is intended to maximize the loss 
on speaker and language identification while 
concurrently minimizing the loss function related 
to the detection of Major Depressive Disorder 
(MDD).The approach ensures the model to learn 
paralinguistic features in speech with high 
corelation with MDD. The model structure is 
illustrated in Fig. 1 where the feature 

representations go through an data augmentation 
process and   adversarial disentanglement of 
speaker and depression characteristics. 
 

 
Figure 1: An illustration of the proposed system. The 
input raw audio segment is fed into foundation model  
and extracted  feature representations are fed into a 
temporal pooling layer to have a common output vector 
dimension. The non augmented samples are fed to a 
speaker classification layer and the augmented features 
are fed to a depression classification layer where the 
total loss is a combination of a speaker loss and MDD 
loss  

3 Dataset  

3.1 DAIC-WOZ Dataset  
 
Speech based depression detection systems are 
often benchmarked using the performance on The 
Distress analysis interview corpus wizard of Oz 
(DAICWOZ)[17], the dataset contains 189 
participants. During the data collection process  
each participant completed patient health 
questioner (PHQ-8) [19] and assigned a 
depression score form a self rating index. The 
Dataset consist 100 speakers used for  training and 
30 speakers used for evaluation containing 58 
hours of combined speech sampled at 16kHz.  
 



 
3.2 Oizys Dataset  
 
Oizys is a Mandarin Chinese speech corpus 
collected by Voice Health Tech annotated 
partnering with Peking University Sixth Hospital, 
The Fifth people's Hospital of Tangshan, and 
Weihai Mental Health Center etc [2].Unlike 
DAIC-WOZ dataset Oizys is a much diverse 
dataset containing  45,552 audio samples consists 
of 3343 unique speakers for training and 
evaluation as well as 161 speakers for independent 
validation. During the interview process the 
participants were diagnosed by a license 
psychiatrist following DSM-5 process and 
conclude if the participant was depressed or 
healthy, depression severity was estimated using 
Hamilton Depression Rating Scale(HAM-D) 
method. The participants were asked to use their 
own mobile device record answers for 13 uniquely 
designed questions complied according to the 
privacy and ethical standard capturing a wide 
range of acoustic properties in speech. Oizys is the 
only dataset in the world that has the scale and 
diversity on the voice protocols used to capture 
data containing Diadochokinetic tasks, sustained 
vowel, stroop test as well as open speech capturing 
data from ages ranging from 18-65 year old 
participants with an average age of 34 where  64.8% 
of whom are female and 35.2% of whom are 
male.  
 
4 Data Processing and Augmentation  

In this section we outline the procedures 
pertaining to data processing, feature extraction, 
and augmentation as utilized in our workflow. The 
model takes raw audio as input. The SDD model, 
as delineated in Figure 1 the audio representation 
features are extracted from the raw audio 
segments, During the initial stage, the system 
accepts a unique voice sample from a recording 
session denoted as X, that consists of 13 unique 
voice samples from the Oyisiz dataset . This 
sample is an aggregation of 13 individual voice 
responses, formulated as a result of a participant 
answering a set of questions. Hence, we represent 
the sample as !	 = 	 {%!, … , %!"}. The foundation 
model take in the raw audio segment, and give out 
an embedding matrix. Given )# frame length and 
)$ frame stride and )% denote the frame count  

.The shape of embedding matrix is [)+, ,], the 
relationship between frame count for a given 
signal with a duration d  )+ = ./

&'(!
("
0 + 13. In 

our study, the embedding dimension , is 768 and 
the convolution stride )#  is 209:  and )$  is 
3209:  The raw audio after going through the 
foundation model will be feed in an adaptive 
average pooling layer to get the )+ to be 1 to let 
all the outputs to have a same dimensional output 
vector. 
 
The Output features fed into a speaker invariant 
training pipeline uniform speaker with a combined 
loss function forcing the model to learn 
paralinguistic related features disentangling the 
model from learning speaker related features. 
Uniform speaker disentanglement (USD)[20]   
minimizes the prediction loss for the primary task 
of depression prediction and simultaneously  
maximizes the loss of the secondary task of 
speaker prediction. 
 

<)*)+# =	<& − 	>(<$) (1) 
 
 

In the calculated total loss  combines the cross 
entropy loss for speaker prediction multiplied with 
λ where lambda is a hyperparameter governing the 
contribution of speaker loss, 1e-3 was selected as 
the initial hyper parameter value enforced by the 
similar literature [21]. In the formulation of the 
detailed equation, d denoted depression detection, 
s denoted speaker diarization, and CE denoted 
Cross Entropy Loss. 
 
 

<& = AB(C&!, D&)	(2)  
 

<& denotes the Cross Entropy Loss for depression 
detection, with C& representing the parameters of 
the depression detection model, X the input 
features, and D& 	the true labels for depression. In 
the equation 2 
 

<$ = AB(C$!, D$)	(3) 
 
Similarly in the equation 3	<$ denotes the Cross 
Entropy Loss for speaker diarization, with C$ 
representing the parameters of the speaker 
diarization, X the input features, and D$	the true 
labels for speaker recognition. 



 
<)*)+# 	= AB(C&!, D&) 	− AB(C$!, D$)(4) 

 
F<)*)+#
FC&

	= 	
F<& 	− 	>F<$

FC& 	
	(5) 

 
 

The equation 5 computes the gradient of the total 
loss with respect to the parameters of the 
depression detection model. 

 
C& 	≔ C& − I /

,-#
,.#

	− 	>
,-"
,.#

0 (6) 
 
Finally, the parameters C&  of the depression 
detection model are updated using a learning rate 
α and the calculated gradient from Equation 5. 
This update aims to minimize the loss for 
depression detection while maximizing the loss 
for speaker diarization, achieving the desired 
balance between the primary and secondary tasks. 
by leveraging this set of equations, the 
optimization step  formulates a robust approach to 
simultaneously address the objectives of accurate 
depression prediction and effective speaker 
diarization. The inclusion of the trade-off 
hyperparameter λ offers flexibility in controlling 
the balance between the two competing objectives, 
catering to varying requirements and scenarios in 
practical applications. 
	
We compel the model to prioritize depression-
discriminative data related to paralinguistic 
features while disregarding certain speaker-
specific details, thereby ensuring the model 
remains unaffected by variations in individual 
speaker characteristics 
 
According to the Figure 1 The augmented Output 
features from the foundation model are reused for 
primary task of depression prediction. Oizys 
dataset consists of 13 questions with each question 
exploring different affective state being Neutral, 
Negative and Positive. Even though Depression is 
modeled as a binary classification problem, 
depression inherently contains samples with 
different severity levels. Different voice tasks for 
example read speech vs spontaneous speech 
detecting in the detection of depression, have 
varying impacts on diverse age groups 
[22].Therefore In order to balance the depressed 
and healthy sample count an alternative strategy is 

used where different permutations of samples 
from !  with different affective states from the 
depressed class is used as an augmentation till the 
total sample size between the depressed and 
healthy class is equal. 
 
The permuted Feature representation arrays from 
X are concatenated together and passed through to 
a depression detection classifier configuration of 
two transformer encoder layers, each operating in 
a 128-dimensional space and utilizing four 
attention heads to effectively manage sequence 
information, These layers are paired with a full-
connected layer to facilitate the final classification 
output. 
 
5 Experiments  
The experiments were conducted using DAIC-
WOZ dataset and Oizys datasets. In order to create 
a balanced representation of the dataset a sub data 
split was created Oizys_train, Oizys_ validation 
and Oizys_test. For the English dataset DAIC-
WOZ with 189 samples containing train , dev and 
test set , train set was used in training while the dev 
set was used to evaluate the model final 
performance. 
Detailed information on the training and 
validation set size is represented in the Table 1  
 
 Table 1: Details about the datasets used for 
experiments.  
 

Dataset  Number of 
Speakers  

Number of 
Samples 

JKLD:)/+01 1323 17191 
JKLD:2+#0&+)0*1 333 4328 
JKLD:)3$) 

,MNA −OJP)/+01 
,MNA −OJP&32 

161 
100 
30 

2188 
4450 
1286 

 

The DAIC-WOZ dataset contains audio 
recordings of the participant and the 
interviewer’s speech. The speech segments 
related to the participants were extracted using 
the time-stamps provided with the corpus. 
Hence speech segments per speaker represented 
as array. !45 	= 	 {%!, … , %1}  the speech 
segments varies from length and contains free 
form speech. 



5.1 Experiments 

5.1.1  DAIC-WOZ model  

Model was trained using raw-audio features as 
input features, DAIC-WOZ dataset contains 50+ 
hours of audio samples across 189 participants 
however depressed participants represent 28% 
while healthy samples represent 72% in the total 
train set. Data processing and augmentation 
technique was applied to address the data 
imbalance issue. The speech segments per 
participant were randomly shuffled and new 
permutations were obtained as an augmentation 
strategy to balance the total depressed and healthy 
sample count. The permutations of the samples 
were generated preserving the order of the 
sequence to ensure the flow of speech. 

The extracted foundation model features were 
channeled through an adaptive pooling layer to 
achieve a standardized, common as delineated in 
the speaker invariant training framework depicted 
in Figure 1. The output features concatenated by 
speaker and passed along to depression classifier 
While non concatenated features used in the 
speaker classifier yielded in  optimal F1 scores.  

5.1.2  Oizys model 

The Oizys model was trained with similar 
architecture with slight variation in the data 
augmentation technique, Unlike the DAIC-WOZ 
dataset Oizys consist of 13 responses per speaker 
which have an affective state of expression being 
positive negative and neutral. Oizys_train consists 
of 8429 depressed samples and 8762 healthy 
samples, In order to preserve the original variation 
of the emotional responses the question order was 
preserved while premutation process. The 
Extracted Foundation models were later 
channeled through the speaker invariant training 
pipeline as depicted in Figure 1.  

 

 

6 Results and Discussion 
 
6.1 Evaluation Metric 
 
Depression classification when modeled as a 
binary classification problem is often evaluated 
using the F1 score which is the harmonic mean of 
the precision and  recall. However in the clinical 
setting additional metrics are often used to 
evaluate the algorithm performance. Given that Tp: 
True Positives , Tn : True Negatives , Fp: False 
positives and Fn: False negatives  Sensitivity of 
the model is defined as the True positive rate or 
recall QRS:KTKUKTD = 	 67

678(1  . Another important 
metric is the True negative rate  QVR+KWK+KTD =
	
61

618(7 .In this context we can define Precession as 

XYR+R:KZS = 	
67

678(7 . The AUC is a metric that 
evaluates the performance of a binary 
classification system as its discrimination 
threshold is varied. It represents the probability 
that a randomly selected positive instance will 
rank higher than a randomly selected negative 
instance. Mathematically, AUC is the integral of 
the ROC curve. The ROC curve plots Sensitivity 
(or True Positive Rate) against 1−Specificity (or 
False Positive Rate) for various threshold values. 
The AUC will be a value between 0 and 1, with 1 
indicating a perfect classifier and 0.5 indicating a 
classifier that is no better than random chance. 
 
6.2 Results  
 
Results section is compromised into 3 sections 
where the baseline results are shown in the Table 
2 . The next section elaborates the results obtained 
using the speaker invariant training pipeline. 
Furthermore, benchmark methods on depression 
classification evaluated as part of the literature 
review are summarized in the Table 3. And the 
effect on data augmentation for mixed model is 
presented in the section Table 4. Comparison of 
the methods are only performed on the ,MNA −
OJP&32	set using F1 Scores and additionally to 
F1 scores sensitivity, specificity and AUC is 
recorded for each experiment. 
 
For creating the baseline model results were 
generated by channeling the self-supervised 
representations through a depression classifier 
model which consist of a fully connected layer. No 



augmentations were applied to the raw data 
therefore it’s evident to result in unbalanced 
performance in metrics 

Comparing to the baseline model where only the 
self supervised representation are used for training 
results we can observe an overall a +10% 
improvement in the external independent test set 
denoted as JKLD:)3$) while Trained using the 
speaker invariant training pipeline. 
 
In the Oizys_test dataset, we observed a marked 
enhancement in the performance metrics. The 
sensitivity exhibited a notable increase +0.10 , 
while the specificity showed a commendable rise 
of +0.14 . Additionally, the AUC score 
demonstrated a significant gain of  +0.10. These 
findings underscore the efficacy of the 
modifications implemented in the model, 
emphasizing its potential in depression detection 
tasks. 
 
6.1.1  Method Comparison   

When elevating depression detection performance 
on various models and the SOTA baseline. The 
results are based on F1-Avg and F1(D) and F1(ND)  
for DAIC-WOZ dataset. The DepAudioNet 
model[23]   considered to be the baseline model in 
MDD classification. The model is trained using 
Mel-spectrograms and archive 0.6 F1-Avg and 
also it is observed that F1(D) and F1(H) is 
imbalanced due to the nature of the dataset. 

In the recent publications use of self supervised 
representations extracted from raw audio file have 
gained significant attention as they are more 
robust and have better generalization capabilities 
compared to traditional hand engineered features 
such as mel-spectrograms and formants[18]. 

In the pilot experiments comparing the 
performance on DAIC-WOZ with other 
implementations we have been able to gain +10% 
improvement in F1 scores when the concatenated  
self-supervised features are channeled through a 
speaker invariant training process. 
It's also significant that the SOTA methods 
struggles when maintaining a balanced 

representation of both F1(D) and F1(ND) metrices 
[23][24][25][26][27][28]. This is dues to the 
highly unbalanced nature of the dataset. This can 
be overcome augmentation techniques where the 
sample counts between depressed and non-
depressed sample counts are balanced. 

6.1.2  Mixed Language Dataset  

Figure 2: An illustration of the Self supervised 
representations for DAIC-WOZ and Oizys  datasets, 
the figure shows the embedding space for the 2 
corpuses share significant differences  .  

DAIC-WOZ and Oizys are fundamentally 
different corpuses.  When both models are trained 
on the datasets individually shows excellent 
generalization ability while evaluating the 
evaluation metrics. 

 In order to further analyze   the generalization 
ability in a mixed language setting Oyzis_train 
and DAIC-WOZ_train datasets we shuffled 
together and independently evaluated. The the self 
supervised representations extracted from the 
foundation models were fed into a program to 
visualize the embedding space. Embedding 
analysis is vital for understanding the behavior of 
classifiers. Embedding point clouds generated via 
Uniform Manifold Approximation and 
Projection(UMAP)[29] highlights the acoustic 
feature differences between the datasets highlighted in 
the Figure 2. Further experiments are required  to 
evaluate and map the acoustic differences between the 
corpuses. 

 



Table 2: Depression detection performance on Oizys, DAIC-WOZ datasets. baselines is evaluated 
based on F1-AVG, F1-MAX, Sensitivity, Specificity. Baseline Models without augmentations.  
 

 
 
Table 3: Depression detection performance on Oizys, DAIC-WOZ with speaker invariant training 
pipeline, datasets are evaluated based on F1-AVG, F1-MAX, Sensitivity, Specificity. 
 

 
 
Table 3: Performance in detecting depression across various models and SOTA baselines is evaluated 
based on F1-AVG, F1(ND), F1(D) , utilizing the DAIC-WoZ dataset. The SOTA baseline results are 
sourced from either reproduced values or directly reported from the relevant studies. 

 

 
 
 
 

 

 
 
 
 

Model Dataset 
Size 

Sensitivity Specificity AUC F1(D) F1(ND) 

,NMA −OJP&32 1286 0.65 0.5 0.61 0.55 0.56 

!"#$%!"#!"#$%"&$'( 4328 0.79 0.71 0.83 0.76 0.74 

JKLD:)3$) 
 

2188 
 

0.67 0.66 0.72 0.66 0.65 

Model Dataset 
Size 

Sensitivity Specificity AUC F1_avg F1_max Adv 

,NMA −OJP&32 1286 0.83 0.89 0.88 0.83 0.86 ! = 1$"# 

!"#$%!"#$%"&$'( 4328 0.84 0.83 0.91     0.83  ! = 1$"# 

JKLD:)3$) 2188 
 

0.77 0.80 0.82     0.83  ! = 1$"# 

Model Input Features  Model 
Parameters 

F1_avg         F1(D) F1(ND)  

DepAudioNet[23] 
FVTC-CNN [24] 
SpeechSimCLR[25] 
SpeechFormer[26] 

Mel-Spectrograms 
Formants 

Mel-Spectrograms 
Wav2vec 

280k 
- 
- 

33M 

0.60 
0.64 
0.65 
0.69 

 

0.51 
0.82 
0.56 

- 
 

0.69 
0.46 
0.75 
   - 
 

CNN-LSTM [27] 
 

Spk. Embd. + 
OpenSmile 

 

 0.68 
 

0.51 
 

0.86 
 

WavLMPT[18] 
ECAPA-TDNN (E3)[28] 
VoiceHealthTech(ours) 

Wavlm 
Raw-Audio 

Wavlm 

95M 
609k 
95M 

0.70 
0.73 

    0.83 

- 
0.63 
0.84 

   - 
0.83 
0.88 



7 Conclusion   
 
This paper approaches speech-based depression 
detection from invariant training using self-
supervised representations to maximize the 
contribution of para-linguistic features in 
depression diagnosis. The model performance 
evaluated on English and Mandarin Chinese 
corpuses signifies the deep learning method used 
can be applied to fundamentally different 
language corpuses when detecting MDD using 
speech.The proposed approach trained in an 
adversarial manner surpasses the baseline model 
performance by +10% archiving SOTA on 
publicly available DAIC-WOZ dataset with only 
using raw audio acoustic speech form. 
 
The data augmentation and concatenating the 
features by speaker represent more information 
regarding psychomotor retardation compared to 
random sampling approach applied in 
DepAudioNet [23] experiments. 
 
8 Future Work  
 
Data scarcity is one of the key issues when it 
comes to SDD, Future work would be focused on 
collecting data with a protocol similar to Oizys 
dataset to create common feature representations 
between different language corpuses. 
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